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Abstract Nitrous oxide (N2O) is a potent long-lived greenhouse gas (GHG) and the strongest current
emissions of global anthropogenic stratospheric ozone depletion weighted by its ozone depletion
potential. In California, N2O is the third largest contributor to the state’s anthropogenic GHG emission
inventory, though no study has quantified its statewide annual emissions through top-down inverse
modeling. Here we present the first annual (2013–2014) statewide top-down estimates of anthropogenic N2O
emissions. Utilizing continuous N2O observations from six sites across California in a hierarchical Bayesian
inversion, we estimate that annual anthropogenic emissions are 1.5–2.5 times (at 95% confidence) the state
inventory (41 Gg N2O in 2014). Without mitigation, this estimate represents 4–7% of total GHG emissions
assuming that other reported GHG emissions are reasonably correct. This suggests that control of N2O
could be an important component in meeting California’s emission reduction goals of 40% and 80% below
1990 levels of the total GHG emissions (in CO2 equivalent) by 2030 and 2050, respectively. Our seasonality
analysis suggests that emissions are similar across seasons within posterior uncertainties. Future work is
needed to provide source attribution for subregions and further characterization of seasonal variability.

1. Introduction

Nitrous oxide (N2O) is the third most important long-lived greenhouse gas (GHG) behind carbon dioxide
(CO2) and methane (CH4) (Hofmann et al., 2006; Montzka et al., 2011), in part due to its long atmospheric resi-
dence time (114 years; Solomon et al., 2007) and strong ability to absorb infrared radiation. The atmospheric
N2O burden has increased since the start of the industrial revolution. Also, N2O is the dominant ozone-
depleting gas species due to its large emission rate when weighted by its ozone depletion potential
(Ravishankara et al., 2009). Although total N2O emissions are significantly lower than CO2 emissions, the
global warming potential (radiative forcing integrated over 100 years) of N2O is 298 times greater than that
of CO2 (California Air Resources Board, CARB, 2016; Myhre et al., 2013). Since 1750, the atmospheric concen-
tration of N2O has increased by approximately 20% at the global scale (United States Environmental
Protection Agency, U.S. EPA, 2015).

N2O is the third most important GHG in California after CH4 (9% of the 2014 total GHG in Tg CO2 equivalent
(CO2eq) using 100-year global warming potential) and CO2 (84%). Anthropogenic sources in California’s
bottom-up inventory are estimated to emit approximately 41 Gg (109 g) N2O/year, equivalent to about 3%
of California’s total GHG emissions when converted to CO2eq (CARB, 2016). However, California’s N2O emis-
sions have been underestimated in the bottom-up inventory (Jeong, Zhao, Andrews, Dlugokencky, et al.,
2012; Xiang et al., 2013) and thus need to be further investigated. Also, N2O can potentially be important
as the state implements mitigations reducing sources of other GHG emissions. In California, quantitative
accounting for N2O and other GHGs is essential because California committed to an ambitious plan to reduce
GHG emissions to 1990 levels of the total GHG emissions (in CO2eq) by 2020 through Assembly Bill 32 (AB32,
passed in 2006), which is the first binding policy to address climate change in the United States (Legislative
Information, 2006). In 2016 California’s legislature passed Senate Bill 32, which requires GHG emissions to be
40% below 1990 levels of the total GHG emissions (in CO2eq) by 2030 (Legislative Information, 2016).
Moreover, California’s Executive Order S-3-05 establishes a GHG emission target of reducing state GHG
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emissions to 80% below 1990 levels by 2050 (Office of Governor, 2005). With clearly defined long-range goals
for California’s GHG emission reduction, it is essential to account for non-CO2 emissions including N2O to
verify the implementation of the progressive targets.

Few studies, however, have attempted to assess California’s N2O emissions using atmospheric observations,
while a number of studies (e.g., Cui et al., 2017; Jeong et al., 2013, 2016; Johnson et al., 2016; Wecht et al.,
2014) have been conducted to estimate emissions for CH4, which is another major non-CO2 GHG regulated
by law. Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) estimated N2O emissions in central California using
2 years of observations from a single tower and showed that actual N2O emissions are significantly (> 2
times) higher than the state inventory. Xiang et al. (2013) reported that the statewide emissions of N2O
during early summer (May–June) were 3–4 times higher than the Emission Database for Global
Atmospheric Research (EDGAR) inventory and other inventories. These two studies are limited in constraining
N2O emissions due to lack of spatial or seasonal coverage, and California’s annual N2O emissions have not
been fully evaluated.

Here we quantify both urban and rural N2O emissions from California, presenting the first analysis of full
annual N2O emissions across California using atmospheric observations from six tower sites during June
2013 to May 2014. We use a hierarchical Bayesian inversion (HBI) method (Ganesan et al., 2014; Jeong
et al., 2016, 2017), which allows us to assign probability distributions to the prior assumptions (e.g., uncer-
tainty for the prior emissions) instead of using prescribed values. This study illustrates how uncertainty in
inverse analysis can be treated by a combination of our best a priori knowledge of error sources (e.g., trans-
port error) and statistical inference.

2. Materials and Methods
2.1. N2O Measurements and Boundary Conditions

Dry-air N2O mole fractions were measured at six tower sites across California (Table 1 and Figure 1). Among
them, measurements from the Arvin (ARV), Sutter Buttes (STB), and Walnut Grove (WGC) sites mainly
constrain emissions from California’s Central Valley, while the Caltech (CIT), San Bernardino (SBC), and
Sutro Tower (STR) sites are used to infer emissions from the major urban regions (South Coast Air Basin
[SoCAB] and San Francisco Bay Area [SFBA]; see Figure 1 for site locations).

At most sites (except STR), themeasurements are made using air sampling and analysis systems that combine
pumps, membrane (Nafion) air driers, and calibrated gas analyzers. These sites utilized off-axis Integrated
Cavity Output Spectroscopy (Los Gatos Research Inc. Model 907-0015), and air handling and calibration
methods differed across the sites (Table 1). At a subset of sites (WGC, SBC) air sampling is switched between
the multiple heights (WGC: 30, 91, and 483 m above ground level, every 300 s; SBC: 27 and 58 m above
ground level, every 400 s) with measurements allowed to settle, with only the last 120 s used for the ambient
air measurement. Only 91-m (WGC) and 58-m (SBC) measurements were used for the inverse model analysis.
For other sites, measurements are made at a single height on those towers and switching was on only as was
necessary for calibrations. N2O measurements are averaged to 3-hr time intervals for inverse modeling with
the exception of flask-air samples. As in previous work (e.g., Jeong, Zhao, Andrews, Dlugokencky, et al., 2012,
Jeong et al., 2017, 2013), only daytime data are used in inverse modeling to reduce the impact of nighttime
meteorology (e.g., nighttime boundary layer).

The uncertainty in the tower measurements are generated by a combination of short-term instrument noise
(typically root-mean-square (RMS) value of 0.05 ppb for ~100-s average), atmospheric variability (typically
>0.05 ppb and as large as 0.5 ppb for sites in regions with large N2O emissions), and instrument offset drift
relative to periodic calibration. As described below, the estimated accuracy of the calibration varied from
approximately 0.2 ppb for well-calibrated sites (CIT, SBC, and WGC), 0.4 ppb for the site with only flask-air
measurement (STR), to 1 ppb for the two valley sites with infrequent calibration (STB and ARV). The instru-
ment offset and gain weremeasured periodically and corrected using twomethods. For SBC andWGC, instru-
ments were calibrated using three secondary gas standards tied to the WMO X2006A N2O standard scale
maintained at National Oceanic and Atmospheric Administration (NOAA; Hall et al., 2007). The offset and gain
of the Los Gatos Research Inc. instrument were measured every 3 (WGC) and 4 hr (SBC) using two “high-low”
secondary standards and then checked with the third “target” standard at times midway between the “high-
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low” calibrations. At CIT, offset and gain were calibrated every 3 months using NOAA primaries, and offset
was calibrated using a secondary standard every 4.5 hr and checked for consistency using every other
measurement. For the other two in situ sites (ARV and STB), a “precision check” was performed every 23 hr
using an uncalibrated secondary gas cylinder of dry natural air. For two sites (WGC and STR), N2O was
measured in flask-air samples collected at 2200 GMT and analyzed by NOAA’s cooperative air sampling
network. For WGC, SBC, and CIT, target check measurements showed RMS variations less than 0.1 ppb. For
WGC, the observed RMS difference between flask measurements and in situ measurements interpolated to
the time of the flask sample varied from ~0.3 to 0.5 ppb, consistent with the repeatability of flask-air
measurements (~0.3 ppb at 68% confidence). For sites with infrequent (23 hr) precision checks (ARV and
STB), which do not facilitate correction of diurnal variations in instrument offset due to temperature, the
observed RMS variation in the target checks was 0.5–1 ppb depending on time period. We note that the
coastal site of Trinidad Head (THD) can be potentially useful for N2O background in California. However,
THD observations for our study period were not publicly available at the time of our analysis in 2015, which
was conducted as part of a multigas project, and were not included in the inversion. In future studies, we will
include THD data for N2O background analysis when available.

The predicted N2O upstream boundary values were estimated following the method used in Jeong, Zhao,
Andrews, Dlugokencky, et al. (2012) and Jeong et al. (2013, 2016). As with previous work, N2O boundary
values were estimated using data from the Pacific coast N2O vertical profiles (http://www.esrl.noaa.gov/
gmd/ccgg/aircraft/) and remote Pacific marine boundary layer sampling sites (http://www.esrl.noaa.gov/
gmd/ccgg/flask.html) within the NOAA Earth System Research Laboratory Cooperative Global Air Sampling
Network. The data were smoothed and interpolated to create a three-dimensional (3-D) curtain, varying with
latitude, height, and time. Following Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) and Jeong et al. (2013),
background uncertainty associated with the Pacific N2O curtain was estimated by combining (in quadrature)
the RMS error in the estimation of the 3-D curtain and the standard error of 500 Weather Research and
Forecasting and Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) background samples. The back-
ground uncertainties varied from 0.28 to 0.40 ppb depending on the site and season, which are similar to
those (0.24–0.46 ppb) reported in Jeong, Zhao, Andrews, Dlugokencky, et al. (2012). The N2O boundary values
derived from the NOAA curtain showed biases during some seasons (mostly summer and spring). Xiang et al.
(2013) also reported that the N2O boundary values estimated from the NOAA curtain during May–June 2010
was systematically lower (1.6 ppb) compared to free tropospheric observations. The bias in the background
was corrected together with other potential biases in measurements and transport while performing inver-
sions (see section 2.4 and Text S2 for details on bias correction; Jeong et al., 2017).

2.2. Prior N2O Emissions

We use the spatial distribution of EDGAR 42FT2010 (EDGAR, release version 4.2 Fast Track, http://edgar.jrc.ec.
europa.eu; hereafter EDGAR) prior emission maps. Themaps are then adjusted to conform to expectations for
California by scaling EDGAR emissions to the CARB 2012 N2O inventory (CARB, 2014). The CARB inventory
does not include an estimate for personal product use, which is included in the industrial processes and

Table 1
GHG Site Information Across California

Site Location Latitude Longitude
Inlet height
(m, AGL)a

Measurement
data availability

Instrument calibration
comments

ARVb Arvin 35.24 �118.79 10 October 2013 to May 2014 Precision check, 23 hr
CIT Caltech, Pasadena 34.14 �118.12 10 June 2013 to May 2014 Offset calibration, 4.5 hr
STBb Sutter Buttes 39.21 �121.82 10 April 2014 to May 2014 Precision check, 23 hr
STR San Francisco 37.76 �122.45 232 June 2013 to May 2014 NOAA flasks, 2200 GMT
WGC Walnut Grove 38.27 �121.49 91 June 2013 to May 2014 Offset and gain calibration + target check,

3 hr NOAA flasks 2200 GMT
SBCb San Bernardino 34.09 �117.31 58 June 2013 to May 2014 Offset and gain calibration + target check, 4 hr

Note. AGL = above ground level; NOAA = National Oceanic and Atmospheric Administration.
aInlet heights used in the inversion. Only 91-m (WGC) and 58-m (SBC) measurements were used for the inversemodel analysis. For other sites, measurements were
made at a single height on those towers and switching was on only as was necessary for calibrations. bIndicates California Air Resources Board’s statewide
greenhouse gas monitoring network sites.
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product use (IPU) sector of the EDGAR inventory. For the IPU sector, we use the estimate from EDGAR for
inverse modeling, which accounts for 22% of the EDGAR total. The IPU sector in EDGAR includes emissions
from chemical and solvents (e.g., nitric acid, adipic acid, and caprolactam; Janssens-Maenhout et al., 2014).
Thus, the a priori emissions used here consist of a hybrid of emission estimates from the CARB and EDGAR
N2O inventories (state total = 48.3 Gg N2O/year). In the prior model, emissions from both EDGAR and
CARB are provided without temporal variation. Figure 1a shows the total (across sectors) prior
anthropogenic emission map used in the inverse analysis. For region-specific analysis of N2O, the total

Figure 1. Prior N2O emissions in California. (a) The total anthropogenic prior N2O emissions used for inverse modeling (state total = 48.3 Gg N2O/year) with locations
of measurement sites across California, (b) region classification (California Air Basins, region numbers shown in the parentheses), and (c) emission summary
(Gg N2O/year) by region and sector. In (c), sectors include agricultural soils (AGS), manure management (MNM), agricultural waste burning (AWB), industrial
processes and product use (IPU), energy manufacturing transformation (EMT), indirect emissions from NOx and NH3 (IDE), indirect N2O emissions from agriculture
(N2O), oil production and refineries (OPR), buildings (residential and others; RCO), waste (solid and wastewater; WST), nonroad transportation (TNR), and road
transportation (TRO). Note that direct soil N2O (AGS) is emitted from synthetic and manure fertilizers and crop residues left in the field while indirect N2O emissions
(N2O) are from nitrogen leaching and runoff. The numbers on the left and bottom of (c) represent emission sums by sector and region, respectively.
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emissions are summed to subregions (Figure 1b) comprising California’s Air Basins (http://www.arb.ca.gov/ei/
maps/statemap/abmap.htm). In Figure 1c, we show a summary of the prior emissions (total = 48.3 Gg N2O/
year) used in the inversion. The Central Valley (Regions 3 and 8) emissions account for 46% of statewide total
N2O emissions and the two major urban regions (Regions 7 and 12) account for 26% of the total.

To estimate the contributions from natural environment, we consider N2O emissions from natural soils and
ocean. For the contributions from natural forest soils, we derive an emission map for natural forest based
on the Global Emissions InitiAtive (GEIA) emission model (Bouwman et al., 1995) and include it in the
inversion. Because the GEIA emissions are available at a coarse resolution of 1° × 1°, we used the
Moderate Resolution Imaging Spectroradiometer land cover type data product (MCD12Q1, year 2012,
available at http://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/2012.01.01/, accessed February 2015) to iden-
tify natural forest pixels at 0.1° (~10 km) resolution (see supporting information Figure S1). To minimize
attribution of managed soils to natural forests, we included only the pixels with the forest area ratio
(i.e., forest versus total area) greater than 80%. We note that the EDGAR model estimates nonzero anthro-
pogenic N2O emissions in most of California except for the desert area and part of the northern forest
region. To generate 0.1° natural forest N2O emissions, we assigned the 1° × 1° GEIA emissions from soils
under natural vegetation and fertilized agricultural fields to the identified natural forest pixels based on
the Moderate Resolution Imaging Spectroradiometer-derived natural forest map (supporting
information Figure S2). The prior N2O emission total from natural forest is 2.2 Gg N2O/year, which is
4.6% of the state total anthropogenic N2O emissions. Similarly, we used ocean N2O emissions from the
GEIA model (Bouwman et al., 1995) to incorporate emissions from the ocean along the California coast
to the inversion system. The total ocean N2O emission from the GEIA model within our entire modeling
domain over the Pacific Ocean (see Figure S3) is 60 Gg N2O/year.

2.3. Atmospheric Transport Modeling

We use the coupled WRF-STILT model for particle trajectory simulations (Lin et al., 2003; Nehrkorn et al., 2010;
Skamarock et al., 2008). We adopt the setup used in Jeong et al. (2016) and Bagley et al. (2017) to run the
STILT model (see supporting information Figure S4 for the WRF domain). In this setup, an ensemble of 500
STILT particles is run backward in time for 7 days driven with meteorology from the WRF model (version
3.5.1; Skamarock et al., 2008). The details for WRFmodel evaluation are described in Bagley et al. (2017) where
transport errors are evaluated using meteorological observations and carbon monoxide (CO) for the same
period as this study (June 2013 to May 2014). Here we briefly summarize the WRF simulations. We simulated
meteorology for four different horizontal resolutions (vertical levels = 50) of 36, 12, 4, and 1.3 km (two inner
domains for SFBA and SoCAB) using initial and boundary meteorological conditions provided by the North
American Regional Reanalysis data set (Mesinger et al., 2006). For surface physics, we used two different land
surfacemodels (LSMs) depending on the location of each site (Bagley et al., 2017; Jeong et al., 2013, 2016; see
Table S1 for details). For the Central Valley, we use the five-layer thermal diffusion LSM (5-L LSM) to account
for irrigation in the land surface process during summer (Jeong et al., 2013) while using the Noah LSM (Chen
& Dudhia, 2001) for other seasons. For the urban areas, we use the Noah LSM for all seasons following
Newman et al. (2013).

We use different planetary boundary layer (PBL) schemes depending on the location of GHG measurement
sites (see Table S1). As a default for urban areas, we use the MYNN2 (Mellor-Yamada-Nakanishi-Niino level
2.5) PBL scheme (Nakanishi & Niino, 2006) coupled with the Noah LSM. For the Central Valley we also use
the MYNN2 PBL scheme except for summer for which we use the MYJ (Mellor-Yamada-Janjić) scheme
(Janjić, 1990; Mellor & Yamada, 1982) coupled with the 5-L LSM (Jeong et al., 2013, 2016). Based on the
transport evaluation using predicted and measured CO data (Bagley et al., 2017), we apply the YSU (Yonsei
University) PBL scheme (Hong et al., 2006) for a few cases (e.g., winter season in the southern San Joaquin
Valley) to use an improved representation of topographic influences on boundary layer meteorology
(Jiménez & Dudhia, 2012).

2.4. HBI

We use a HBI method (Ganesan et al., 2014; Jeong et al., 2016, 2017) to estimate regional N2O emissions in
California. We apply the following linear model to estimate scaling factors for adjusting prior emissions
(Fischer et al., 2017; Jeong et al., 2013, 2016, 2017; Wecht et al., 2014; Zhao et al., 2009):
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y ¼ Kλ þ Dþ v (1)

where y is the measurement vector (n × 1), which represents mole fraction time series after subtracting back-
ground values, K = FE (an n × k matrix), F is the footprint (sensitivity of concentration to changes in surface
emission fluxes, n × m), E is the prior emission flux (m × k), λ is a k × 1 vector for scaling factors with a covar-
iance matrix Q (k × k), and v is a vector representing the model-measurement mismatch with a covariance
matrix R (n × n, see Text S1 for the structure of R). D is a vector for mean bias adjustments, which is simulta-
neously estimated with other parameters during the hierarchical inverse process. As demonstrated by Jeong
et al. (2017), each element of the vector D (estimated for each month) represents a combination of mean
background adjustments, measurement offsets, transport biases, and other potential biases for each site
(see Text S2 for details; Jeong et al., 2017). To construct the final measurement and prediction data set used
for equation (1), we applied similar data filtering methods based on well-mixed conditions and background
sampling (Jeong, Zhao, Andrews, Bianco, et al., 2012; Jeong, Zhao, Andrews, Dlugokencky, et al., 2012; Jeong
et al., 2013, 2016; see Figure S8 for data used in the inversion). Additional data filtering was performed based
on fire periods and the CO analysis from Bagley et al. (2017). Bagley et al. (2017) showed that for some cases
(e.g., winter in the southern San Joaquin Valley) WRF-STILT simulations could not capture temporal variations
of CO well, underpredicting CO mole fractions relative to measurements. As in Jeong et al. (2016), we
excluded data points for those hours identified by Bagley et al. (2017) from the inversion. We perform inver-
sions for each month during the study period and solve for 197 values of λ in each month which include 183
pixels (at 0.3° × 0.3°) for the major regions (i.e., Regions 3, 7, 8, and 12 in Figure 1b), 11 nonmajor regions
inside California, outside California for nonocean anthropogenic emissions, natural forest, and ocean regions.
To implement this inversion scheme, the original prior predictions (i.e., Kmatrix) at 0.1° were aggregated into
0.3° pixels and regions (shown in Figure 1b) for the major and nonmajor regions, respectively (Jeong et al.,
2016, 2017).

For the model in Equation (1), the joint parameter set we need to estimate is

Θ ¼ λ;μλ; σλ; σR; η; τ;Df g (2)

where λ is the scaling factor (for emission adjustments), μλ is the prior mean for λ, σλ is the uncertainty for λ
(i.e., square root of diagonal elements of Q), and σR, η, and τ are the parameters used to construct the model-
measurement mismatch covariance matrix R (see supporting information Text S1 for the representation of R).
In HBI we estimate the joint parameter set simultaneously, using themeasurements only once (Ganesan et al.,
2014; Jeong et al., 2016, 2017). Figure 2 shows the summary of the model-measurement mismatch uncertain-
ties (diagonal terms of the Rmatrix) estimated for each month using the HBI method. The prior values shown
in Figure 2 are derived based on the results from Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) where they
report the model-measurement uncertainty for the WGC site. Note that we need this prior value (as a hyper-
parameter) to construct a probability distribution from which we sample to estimate posterior values. For the
WGC prior values, we adopt the estimates for R reported in Jeong, Zhao, Andrews, Dlugokencky, et al. (2012),
and the prior values for the other sites are assumed to be proportional to the background-subtracted mean
mole fraction relative to that of WGC (see Text S1 for details). The posterior uncertainty values (sampled from
the posterior distribution) are generally similar to the prior values with a few exceptions. The results in
Figure 2 show that the data used in the inversion is able to adjust our prior knowledge of the model-
measurement uncertainty yielding values different from the prior estimates. Similarly, we estimated the
diagonal terms of the Q matrix while performing the inversion and the results are presented in supporting
information Figure S9.

With the parameter set identified, the posterior probability can be written as follows:

p λ;μλ; σλ; σR; η; τ;Djyð Þ∝p yjλ; σR; η; τ;Dð Þp λjμλ; σλð Þp μλð Þp σλð Þp σRð Þp ηð Þp τð Þp Dð Þ (3)

where the right-hand side shows the likelihood function (i.e., the term that includes measurements y) and the
prior distribution for each parameter. Note that in equation (3) all variables are in vector form except for η and
τ. Following Jeong et al. (2016), we use the Just Another Gibbs Sampler system (Plummer, 2003) and the R
statistical language (https://cran.r-project.org/) to build Markov chain Monte Carlo (MCMC) samplers for
the posterior distribution in equation (3). The individual probability distributions in equation (3) are described
in supporting information Text S1 and convergence and accuracy of MCMC samples (50,000 samples for each
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parameter) are described in Text S3 (Gelman et al., 2014; Gelman & Hill, 2007; Gelman & Rubin, 1992; Kass
et al., 1998; Korner-Nievergelt et al., 2015; Kruschke, 2015; Michalak, 2008; Miller et al., 2014; Rasmussen &
Williams, 2006).

3. Results and Discussion
3.1. State Total Emissions

Regional anthropogenic N2O emissions were estimated by multiplying the CARB-scaled EDGAR prior
emissions (Figure 1a) by optimized scaling factors for emission adjustments. We estimated a scaling factor
for each 0.3° pixel (total = 183 pixels) within the major emission regions (i.e., Regions 3, 7, 8, and 12 in
Figure 1b), which account for 72% of the total prior emission. For the other 11 regions, we estimated a single
scaling factor for each region (Jeong et al., 2013, 2016, 2017). Posterior emissions were estimated for both
natural forest and ocean sources (see supporting information Figure S5), but those emissions were excluded
from comparison to the CARB inventory, which includes anthropogenic emissions only. We note that the
fractions of monthly mean predicted mole fractions for ocean and forest are less than ~10% of the total
predicted mole fraction both before and after inversion at all sites with the exception of the Sutro coastal site
(supporting information Figure S5). This small fraction of ocean mole fraction relative to the total agrees with
the finding in Xiang et al. (2013), who reported only 0.2- to 0.3-ppb enhancements were explained by the
ocean along California’s coast during early summer of 2010. We note that, although the total ocean emission
from the prior emission map is comparable to the state total emission, ocean emissions are weighted by the

Figure 2. Estimated monthly model-measurement mismatch uncertainties at four major sites with continuous measurements during most of the study period
(June 2013 to May 2014). The posterior values were estimated using 50,000 Markov chain Monte Carlo samples and the error bars represent the 95% confidence
intervals (2σ). The uncertainty value for September at WGC was not estimated because most of the measurements were missing during the month.
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weak footprint in the ocean (as compared to those on land), yielding generally less than 10% of the total mole
fractions at most sites. This suggests that anthropogenic emissions are dominant sources of N2O in California,
as assumed by previous studies (Jeong, Zhao, Andrews, Dlugokencky, et al., 2012; Kort et al., 2008). Figure 3
shows regression analysis results between predicted and background-subtracted, measured mole fractions
using all data used in the inversion for each season. The regression analysis was conducted using the
lmodel2 package available from the R statistical language (https://cran.r-project.org/), which considers
errors in both x and y axes. This simple analysis without full consideration of errors suggests that N2O
emissions are underestimated by the prior inventory model. After inversion, RMS error (RMSE) and
coefficient of determination (r2, prior = 0.16–0.62; posterior = 0.76–0.91) are significantly improved for all
seasons. To test the difference between prior and posterior comparisons, we performed the Kruskal-Wallis
rank sum test, which is similar to one-way analysis of variance but does not require normality of the data.
The test result indicates that the posterior is different (i.e., improved) from the prior, showing p < 0.05 at a
significance level of α = 0.05.

The HBI analysis estimates the state total annual anthropogenic emissions are 62–101 Gg N2O/year
(median = 79 Gg, at 95% confidence). The median emission estimates for individual regions are shown in
Figure 4a. The posterior state total emissions are 1.3–2.1 times larger than the prior total used in inverse
modeling (i.e., a hybrid inventory that estimates emissions at 48 Gg N2O/year, Figure 1; see Figure 4b for
the posterior to prior ratio) and 1.5–2.5 times larger than the recent CARB inventory (41 Gg N2O/year for
2014). This result is generally consistent with that of Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) where
their annual N2O emission estimates for central California during 2008–2009 were 2 times the state inventory.
The spatial distribution of anthropogenic emissions in Figure 4c shows that the major urban regions (SFBA
and SoCAB) as well as the Central Valley are well constrained relative to the other regions. This is a

Figure 3. Comparison of predicted andmeasured N2Omole fractions before (prior, bias not corrected) and after (posterior, bias corrected) inversion for each season.
Note that, as shown in equation (3), the prediction in the posterior comparison represents mole fractions that were generated from a combination of optimized
emissions and bias corrections. The gray dashed line is the 1:1 line and the black solid line indicates the best fit slope for the data (filled circles). For the posterior plot,
the best fit slope was derived from the median values of the posterior emissions (i.e., 50,000 Markov chain Monte Carlo [MCMC] samples). The regression coefficients
in the posterior plot were calculated based on the median values of the 50,000 MCMC samples. The gray shaded area in the posterior plot represents the 95%
uncertainty region based on the upper and lower bounds of the 50,000 posterior MCMC samples.
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significant improvement compared to the result from Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) that
used measurements from a single tower (WGC) located in central California. In this study, using pixel-based
inversion we have significantly reduced the anticorrelation (<20%) in the posterior emissions for the major

Figure 4. Comparison of anthropogenic annual prior and posterior emissions by region. (a) posterior (median) annual emissions (Gg N2O/year), (b) ratio of the
posterior median to prior, (c) ratio of the estimated 97.5th minus 2.5th percentile to prior, (d) estimated annual anthropogenic N2O emissions for the major emission
regions (at 95% confidence), and (e) estimated annual anthropogenic N2O emissions for all regions. The major regions of 3, 7, 8, and 12 represent the
Sacramento Valley (SV), San Francisco Bay Area (SFBA), San Joaquin Valley (SJV), and South Coast Air Basin (SoCAB), respectively.
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emitting regions (e.g., between Regions 3 and 7), compared to those (up to 60% depending on the season) of
Jeong, Zhao, Andrews, Dlugokencky, et al. (2012; supporting information Figure S7). This indicates that our
total emission for each sub-region is much more independent than those of the previous study.

3.2. Emissions From Major Rural and Urban Regions

The HBI using multiple sites across California constrains N2O emissions from a significant portion of emission
sources in both rural and urban regions of California. Figure 4d shows the summary for annual anthropogenic
emissions for the major N2O-emitting (72% of the total) regions in California constrained by measurements
from our six towers (see Figure 4e for all regions). We first examine the emissions for rural regions of
California, focusing on the Central Valley. We estimate that the Central Valley (Regions 3 and 8) emissions
are 29.1–46.1 Gg N2O/year (at 95% confidence). This result suggests that the inferred posterior emissions
are larger than the prior total emission (22.3 Gg N2O/year) for the Central Valley by factors of 1.3–2.1. This
further suggests that the Central Valley is the major emitting region for California’s N2O emissions represent-
ing 37–58% of the posterior median (79 Gg), similar to that (46%) in the prior model.

For urban N2O emissions of California, we consider emissions from the two major urban regions (SoCAB and
SFBA). These urban regions account for 26% of the state’s total N2O emission according to the prior emission
model. The HBI analysis estimates a total of 6.5–13.8 Gg N2O/year for SoCAB (at 95% confidence), which is
0.8–1.6 times the prior. Similarly, we estimate the SFBA N2O emissions to be 4.1–12.9 Gg N2O/year, 1.0–3.1
times the prior. Combining posterior MCMC samples for the twomajor urban regions, we estimate the poster-
ior emissions for the two regions to be 12.3–23.9 Gg N2O/year (at 95% confidence), which are larger than the
prior by factors of 1.0–1.9. Since the spatially explicit EDGAR prior emissions were scaled to CARB’s inventory
by source sector (see section 2.2), comparison with CARB’s inventory for the urban regions requires an
assumption about the spatial distribution of N2O emissions. However, Xiang et al. (2013) suggested that
the EDGAR inventory does not appear to provide good spatial representation of surface emissions in
California. To resolve this potential source of error in the inversion, we first scaled the EDGAR emissions to
match CARB’s inventory by sector. We then conducted pixel-based inversions using large uncertainty
(>100% for most pixels, see Figure S9) to allow for adjustment of potentially misrepresented emissions with
more flexibility. When the inversion was performed at the pixel scale combined with flexible treatment of
prior uncertainty, posterior predictions agreed well withmeasurements, and the posterior yields much higher
correlations than those of the prior (see Figure 3). Based on this result, if EDGAR’s spatial distribution of N2O
emissions is applied to the urban regions, our result suggests that the actual urban N2O emissions in
California are only marginally higher than CARB’s inventory.

3.3. Seasonality in Emissions

We report statewide N2O emissions for each season because measurements are available for a full annual
analysis (June 2013 to May 2014). Figure 5a shows the comparison between the prior state total emission
and the posterior total for each season. For all seasons, the posterior emissions are higher than the prior,
consistent with the region analysis result in Figure 4. Although the result suggests spring (March–May)
emissions may be higher than those of the other seasons, given the large uncertainty range for spring, all
seasonal emissions are similar within error. The potentially higher spring emissions can be expected due to
the application of agricultural fertilizer during spring and the ensuing conversion of nitrate to N2O in the soil.
This seasonal analysis result agrees with earlier work by Jeong, Zhao, Andrews, Dlugokencky, et al. (2012) that
found N2O emissions for central California varied from 1.6 (±0.6 at 95% confidence) to 2.4 (±0.8) times the
EDGAR prior (18.7 Gg N2O/year). For another comparison, despite using a different spatial model for the prior
emissions, Xiang et al. (2013) also found N2O emissions were larger than the prior emissions during the early
summer period.

Our result shows that seasonality in California’s N2O emissions is different from that of the midwestern
region. Miller et al. (2012) reported that the estimated N2O emissions from the midwestern region of the
United States during early summer were 3 times those in winter and twice the annual average. However,
we note that the emissions in the midwestern region of the United Stated are governed by strong seasonal
climate variations in the continental interior and seasonality in agricultural activities. Given the strong corre-
lation between climate, agricultural activities, and emissions in the midwest (Miller et al., 2012), we expect
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smaller seasonality in California N2O emissions due to smaller seasonal temperature variations for the milder
California climate leading to more continuous agricultural activities.

3.4. Source Attribution

Source attribution of emissions provides important information in planningmitigation strategies, allowing for
prioritizing target sectors. We estimate N2O emissions from different sources assuming the spatial distribu-
tion of the CARB-scaled EDGAR prior emission model. Based on this assumption, we scale individual source
prior emissions at each pixel or region by the corresponding inferred scaling factor from the HBI analysis
to obtain posterior source sector emissions. Figure 5b shows posterior annual emissions for major source
sectors estimated from the HBI analysis. We estimate agricultural soil direct N2O (AGS, synthetic and manure
fertilizers and crop residues) emissions to be 20.4–34.3 Gg N2O/year (at 95% confidence), which are 1.3–2.2
times the prior while indirect N2O (N2O, nitrogen leaching and runoff) emissions are 5.8–9.9 Gg N2O/year
(1.3–2.2 times the prior). This is consistent with the larger inferred emissions for the Central Valley (see
Figure 4) as well as a recent study that attributed a large portion of the increase in global atmospheric
N2O to the use of fertilizers (Park et al., 2012).

Although the agricultural soil sector accounts for the largest portion of the state total N2O emission, its rela-
tive contribution to the total is lower in California compared to that of the United States. While our posterior
agricultural soil emissions (both direct and indirect N2O) are ~43% of the state total posterior emission, U.S.
EPA estimates agricultural soils account for ~74% of the U.S. total (1.19 Tg N2O/year for 2013) N2O emissions
(U.S. EPA, 2015). This relatively low emission ratio of agricultural soil to the total is supported by the region

Figure 5. Comparison of anthropogenic prior and posterior N2O emissions by (a) season and (b) sector (only major sectors are shown). In (b), sectors include
agricultural soils (AGS), manure management (MNM), industrial processes and product use (IPU), indirect N2O emissions from agriculture (N2O), waste (solid and
wastewater; WST), and road transportation (TRO).
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analysis result shown in Figure 4 where the annual posterior emission (across sectors) for the Central Valley, a
region dominated by agriculture, was ~50% of the state total. This result suggests that other N2O source
emissions from nonagricultural regions (e.g., SFBA, SoCAB) of California are important. We note that nonagri-
cultural sources (all sectors excluding AGS, N2O, and manure management [MNM]) account for 36% of the
total posterior emissions.

The HBI analysis indicates that the second largest sources of N2O emissions in California are likely MNM and
IPU (emissions from chemicals and solvents, e.g., nitric acid, adipic acid, and caprolactam; Janssens-Maenhout
et al., 2014). As shown in Figure 5b, the posterior emissions from the two sectors are statistically indistinguish-
able although theMNM sector yields a larger posterior median emission than that of the IPU sector. Assuming
the spatial distribution of our prior model, we estimate the total posterior MNM emission is 1.2–2.4 times
higher than the prior, which is consistent with the findings by Owen and Silver (2015) where their estimated
N2O emissions from solid manure piles and anaerobic lagoons alone (included in the MNM sector) were
higher than the U.S. EPA estimate by an order of magnitude. We estimate posterior MNM N2O emissions
account for 15–29% of the state total posterior N2O emission (20% in the prior). Nationally, U.S. EPA estimates
the manure accounts for only 5% of the U.S. total N2O in 2013 (U.S. EPA, 2015). However, Guha et al. (2015)
report that dairy and other livestock contribute 60–70% of daily N2O enhancements near Bakersfield
(Region 8 in this study) during May–June 2010, suggesting that the contribution of MNM in California is likely
larger than the national average, in agreement with our posterior estimates and the CARB inventory.

4. Conclusions

We report the first annual analysis of anthropogenic N2O emissions using atmospheric observations from six
sites across California. We find that state annual anthropogenic emissions are 1.5–2.5 times higher (at 95%
confidence) than that (41 Gg N2O/year in 2014) of a recent state inventory (CARB, 2016). This estimate for
N2O amounts to 4–7% of the total GHG emissions for California (442 Tg CO2eq in 2014; CARB, 2016). This
result suggests that the total N2O emission is not only underestimated in the state inventory but also control-
ling emissions of N2O is a necessary component to meet California’s 40% and 80% GHG reduction goals for
2030 and 2050, respectively. Using a measurement network across California, for the first time, an annual
budget for California’s major N2O-emitting regions have been quantified constraining N2O emissions from
California’s two major urban regions and the Central Valley. This result demonstrates that our approach
can be a useful tool to evaluate the implementation of California’s climate policies accounting for long-term
spatial and temporal changes in N2O emissions. Our study results reinforce the understanding that
agricultural activities are a significant source of anthropogenic N2O emissions in California (Jeong, Zhao,
Andrews, Dlugokencky, et al., 2012; Xiang et al., 2013). Our results also indicate that seasonal variations in
California’s N2O emissions are small compared to that of the midwestern region of the United States.
However, to further characterize seasonal and interannual variability of emissions that are affected by
weather patterns, fertilizer use, and crop production (U.S. EPA, 2015), more measurements with longer tem-
poral and denser spatial coverage are required. In this study, we have shown that the added measurement
sites to the N2O network in conjunction with a robust inverse modeling system significantly reduced the
posterior uncertainty estimates over previous studies. In the future, a combination of improved prior
emission and meteorological models, expanded multigas measurements, and inverse model analyses will
further reduce uncertainty in California’s N2O emissions.
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